주메뉴바로가기 본문바로가기

분석 보고서

Home > 보고서 > 분석보고서
facebook 공유하기 twitter 공유하기
제목
Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams
출처
Techno Press
발행일
2019-11-30
분야분류
IT소재부품, 해외동향, IT부품정보, IT부품정보 네트워크,
원문정보
원문 바로가기
In this article the frequency response analysis of curved magneto-electro-viscoelastic functionally graded (CMEV-FG) nanobeams resting on viscoelastic foundation has been carried out. To this end, the study incorporates the Euler-Bernoulli beam model in association with Eringen's nonlocal theory to incorporate the size effects. The viscoelastic foundation in the current investigation is assumed to be the combination of Winkler-Pasternak layer and viscous layer of infinite parallel dashpots. The equations of motion are derived with the aid of Hamilton's principle and the solution to vibration problem of CMEV-FG nanobeams are obtained analytically. The material gradation is considered to follow Power-law rule. This study thoroughly investigates the influence of prominent parameters such as linear, shear and viscous layers of foundation, structural damping coefficient, opening angle, magneto-electrical field, nonlocal parameter, power-law exponent and slenderness ratio on the frequencies of FG nanobeams.