ITFIND - 정기간행물
주메뉴바로가기 본문바로가기

정기간행물

Home > 간행물 > 정기간행물
facebook 공유하기 twitter 공유하기
제목
[IS-091] 알파스타(AlphaStar)의 AI 알고리즘
출처
소프트웨어정책연구소
발행일
2020-02-26
분야분류
SPRi 이슈리포트, SPRi 이슈리포트, SPRi 이슈리포트, 해외동향, SW/콘텐츠, 지능형 SW,
원문정보
원문 바로가기
1. 서론
2. 알파스타의 도전 과제
3. 알파스타의 AI 알고리즘
4. 결론
알파고 개발진으로 유명세를 탄 딥마인드(DeepMind)는 지난 2019년 10월 30일 세계 최고의 학술지 네이처에 스타크래프트2 인공지능(AI)인 알파스타(AlphaStar) 논문을 발표했다. 알파스타는 2019년 1월 처음으로 딥마인드 홈페이지를 통해 대중에 알려졌으며, 당시 정상급 프로게이머와 대결해 10승 1패를 거둬 큰 이슈가 됐다. 그러나 당시에는 알파스타의 세부적인 내용이 공개되지 않아 알파스타가 어떻게 프로게이머 수준에 등극했는지에 대해 제한적으로 이해할 수 있었다.

이 보고서는 네이처지에 실린 알파스타의 AI 알고리즘을 보다 쉽게 전달하고자 한다. 스타크래프트2라는 게임은 바둑과는 또 다른 차원의 지능적 행동을 요구한다. 서로 상성이 존재하는 전략, 불완전한 정보, 실시간 조작, 장기 계획 등 프로게이머 수준의 스타크래프트2 AI을 개발한다는 것은 AI 분야의 또 다른 그랜드 챌린지이기 때문이다. 알파스타의 개발 과정 역시 순탄치는 않았는데, 연구 초기에 공개한 결과는 일반인 수준정도였기 때문이다. 딥마인드는 성능을 향상시키기 위해 스타크래프트2 AI 학습을 수월하게 시킬 수 있는 학습 도구와 데이터를 대중에 공개하여 연구의 참여를 유도했다.

알파스타는 복잡한 스타크래프트2 AI를 구현하기 위해 10여 개의 AI 알고리즘을 활용했다. 알파스타의 학습 과정은 알파고와 매우 유사한데, 학습에 활용된 AI 모델은 매우 상이하다. 이 보고서는 쉬운 이해를 돕기 위해 바둑과 스타크래프트2, 알파고와 알파스타의 차이점을 바탕으로, 알파스타가 해결하고자 하는 도전과제에 대해 구체적으로 설명할 것이다. 이어서 알파스타 개괄적인 흐름을 지도학습-강화학습-리그학습으로 구분하여 설명하고, 각 단계가 어떠한 의미를 갖는지에 대해 소개하고자 한다.

알파스타는 91.7만 건의 리플레이 데이터를 활용해 44일간 학습하여 스타크래프트2 상위 0.2%에 도달했다. 알파스타를 접한 많은 전문가들은 알파스타가 AI 분야의 또 다른 그랜드 챌린지를 해결했다며 호평하는 한편, 바둑과 같이 정복한 것은 아니라고 밝혔다. 알파스타는 세계 챔피언을 노리기에 아직 보완이 필요하다는 것이 중론이지만, 딥마인드가 다시 한 번 우리나라를 방문해 세계 최고 수준의 국내 스타크래프트2 프로 게이머와의 대결이 성사된다면 다시 한 번 AI의 힘을 전 세계에 알리게 될 계기가 될 것이다.

소프트웨어정책연구소이(가) 창작한 [IS-091] 알파스타(AlphaStar)의 AI 알고리즘 저작물은 "공공누리" 출처표시+상업적이용금지+변경금지 조건에 따라 이용 할 수 있습니다.